BYV26B

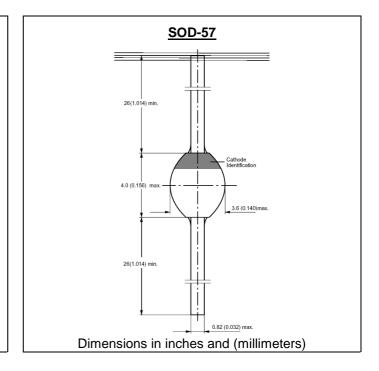
SINTERED GLASS JUNCTION FAST AVALANCHE RECTIFIER

VOLTAGE: 400V CURRENT: 1.0A

FEATURE

Glass passivated
High maximum operating temperature
Low leakage current
Excellent stability
Guaranteed avalanche energy absorption capability

MECHANICAL DATA


Case: SOD-57 sintered glass case

Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Polarity: color band denotes cathode end

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

		SYMBOL	BYV26B	units
Maximum Recurrent Peak Reverse Voltage		V_{RRM}	400	V
Maximum RMS Voltage		V_{RMS}	280	V
Maximum DC blocking Voltage		V_{DC}	400	V
Reverse avalanche breakdown voltage at IR = 0.1 mA		V _{(BR)R}	500min	V
Maximum Average Forward Rectified Current 3/8"lead length at Ttp =85°C		I _{FAV}	1.0	А
Non-repetitive Peak Forward Current at t=10ms half sine wave		I _{FSM}	30	А
Maximum Forward Voltage at rated Forward Current		V _F	2.5	V
Non-repetitive peak reverse avalanche energy (Note 1)		E _{RSM}	10	mJ
Maximum DC Reverse Current	Ta =25°C	I_	5.0	μΑ
at rated DC blocking voltage	Ta =165° C	I _R	150.0	μΑ
Maximum Reverse Recovery Time	(Note 2)	Trr	30	nS
Diode Capacitance	(Note 3)	C _d	45	pF
Typical Thermal Resistance	(Note 4)	R _{th(ja)}	100	°C M
Storage and Operating Junction Temperature		Tstg, Tj	-65 to +175	°C

Note:

- 1. R=400mA; Tj=Tjmax prior to surge; inductive load switched off
- 2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A
- 3. Measured at 1.0 MHz and applied reverse voltage of 0Vdc
- 4. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick; thickness of Cu-layer ≥40 μ m

Rev.A1 www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYV26B

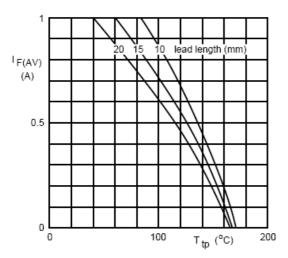


Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

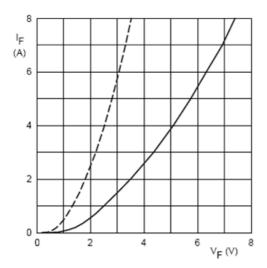


Fig. 3 Forward current as a function of forward voltage; maximum values.

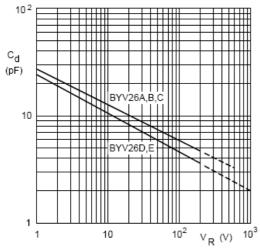


Fig. 5 Diode capacitance as a function of reverse voltage, typical values.

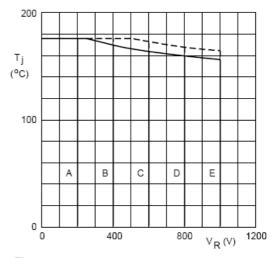


Fig. 2 Maximum permissible junction temperature as a function of reverse voltage.

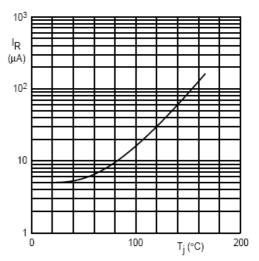


Fig.4 Reverse current as a function of junction temperature; maximum values.

Rev.A1 www.gulfsemi.com